Consumer-Aware Load Control to Provide Contingency Reserves using Frequency Measurements and Inter-load Communication

Jonathan Brooks and Prabir Barooah
University of Florida
Gainesville, Florida USA

Abstract—We consider the problem of smart and flexible loads providing contingency reserves to the electric grid based on using local frequency measurements. The impact on consumers must be minimized at the same time. A recent paper by Zhao et al. proposed a solution to this optimization problem that was based on solving the dual problem in a distributed manner: local measurements and information exchanged with nearby loads are used to make decisions. In this paper, we provide a distributed algorithm to solve the primal problem. In contrast to the “dual algorithm” (DA) of Zhao et al., the proposed algorithm is applicable when consumer disutility is a convex, but not necessarily strictly convex, function of consumption changes; for example, a model of consumer behavior that is insensitive to small changes in consumption. Simulations show the proposed method aids the grid in arresting frequency deviations in response to contingency events. We provide a proof of convergence of the proposed algorithm, and we compare its performance to that of DA, when applicable, through simulations.

I. INTRODUCTION

For stable and reliable operation of the power grid, generation must match consumption at all time-scales [1]. Traditionally, controllable generators are used to achieve this. With the increasing penetration of volatile renewable energies into the power grid, more resources are required to provide contingency reserves. Conventional fossil-fuel generators are often operated at part-load in order to provide spinning reserves (fast-acting contingency reserves). However, generators may be less efficient when rapidly ramping and when operating at part-load, which can result in increased emission rates [2].

However, loads can be used to provide spinning reserves by changing their consumption without increasing emissions [3, 4]. A distributed solution is possible by utilizing grid dynamics [5]. In particular, loads can provide primary control by using local frequency measurements [6–10]. This allows solutions not generally considered in the literature of distributed optimization (e.g., [17–19]).

Any changes in consumption to help the grid, however, may incur some cost or disutility for the consumer—such as deviation of the indoor temperature from a comfortable range. Thus there is a need to balance the two—service to the grid and cost to the consumer. In this paper, we consider the problem of designing decision-making algorithms that provide spinning reserves through control of loads while striking this balance.

This paper is inspired by the recent work by Zhao et al. [11]. We adopt the problem formulation from [11]: minimize total consumer disutility while returning the consumption-generation mismatch in the grid to zero after a sudden change in generation. The consumption-generation mismatch is estimated by each load from noisy local frequency measurements using a state estimator.

The algorithm proposed by Zhao et al., which solves the dual problem, requires the consumers’ disutilities to be strictly convex functions of changes in consumption. Quantifying consumers’ disutility in response to consumption changes is challenging, and work in this area is limited. In [12], an exponential function is used to model disutility, while [13] proposes a dynamic disutility model. A study of an industrial aluminum-smelting plant suggests that there may be no disutility for several hours when changing consumption within some threshold of a nominal value, but there is significant disutility if consumption is varied too much or for too long [14]. Likewise, [15] showed that consumption in commercial air-conditioning loads can be varied to provide ancillary services without any disutility (adverse effect on indoor climate) as long as the changes in consumption are small in amplitude and bandwidth-limited. Based on these studies, we hypothesize that an appropriate model of disutility for many consumers is like the function, \(f_1 \), shown in Figure 1. The disutility is zero for small changes in consumption but non-zero disutility for larger changes. Such a consumer’s disutility is modeled by a convex—not strictly convex—function of consumption change.

![Fig. 1. Alternate models of consumer disutility vs. consumption change.](image-url)

In this work, we propose a method to solve the pri-
mal problem in a distributed manner, which we call the Distributed Gradient Projection (DGP) algorithm. The main contribution over that of [11] is that the DGP algorithm is applicable to disutility functions that are not strictly convex. We prove that the DGP algorithm converges to an optimal solution almost surely when there are no upper and lower bounds on how much a load can change its consumption. However, we test our algorithm through simulations in the more realistic case where changes are bounded. Simulations indicate our proposed algorithm performs well even with bounded consumption changes—frequency excursions are reduced following step changes in generation. Simulation comparisons, in those scenarios where comparison is possible, show that the proposed DGP algorithm performs better than or comparably to the dual algorithm of [11].

Our work is also closely related to [16], which proposed a distributed algorithm to solve a similar problem for generators. However, the algorithm proposed in [16] requires the total load to be fully known among the entire generation network (even if no single generator knows the total load). In contrast, the DGP algorithm requires no loads to know the total mismatch; rather the mismatch is estimated by each load independently via local frequency measurements.

This paper is organized as follows. Section II formally defines the problem that we solve. In Section III, we propose our solution method. We provide a proof of convergence in Section IV, and we describe the simulation parameters in Section V-A. In the remainder of Section V, we compare the simulation results to those in [11]. Finally, Section VI concludes this work and discusses avenues for future work.

II. Problem Formulation

As in [11], we consider an electric grid with a single frequency throughout the grid, whose nominal value is denoted by \(\omega_s \), such as in a microgrid. There are \(n \) controllable loads. The deviation of load \(i \)'s consumption from its nominal value is denoted by \(x_i \) and incurs a disutility \(f_i(x_i) \). The deviation must lie in \(\Omega = [x^L, x^U] \), specified a-priori.

Let \(\Delta g \) be the generation deviation from the nominal value. The problem is for the loads to decide how much to change their own consumption so that the consumption-generation mismatch is diminished while the resulting disutility of the loads is minimized:

\[
\min_{x^i, \ i=1,\ldots,n} \sum_{i=1}^n f_i(x^i), \quad \text{s. t.} \quad \sum_{i=1}^n x^i = \Delta g, \quad x^i \in \Omega^i, \quad (1)
\]

Load \(i \) can obtain a noisy measurement of the grid frequency and can use it to make a decision on \(x^i \) (see Section III-A). In addition, the computation of the decision variables, \(x^i \), must be distributed in the following sense. There is a connected communication graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \), where the node set \(\mathcal{V} = \{1, 2, \ldots, n\} \) is simply the loads and the edge set \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \), specified a-priori, determines which pairs of loads can exchange information. The set of neighbors \(\mathcal{N}^i \) of load \(i \), with which it can exchange information, is defined by \(\mathcal{N}^i = \{ j \mid (i, j) \in \mathcal{E} \} \).

Although Problem (1) does not include time, time plays a role since the noise on frequency measurement is naturally modeled as a stochastic process, and consequently the estimates of \(u \) obtained by every node vary with time. Time is measured by a discrete iteration counter: \(k = 0, 1, \ldots \). The generation at time \(k \) is denoted by \(g_k \) so that the generation change from nominal is \(\Delta g_k \equiv g_k - g_s \), where \(g_s \) is the nominal generation. We assume that at \(k = 0 \) total load and total generation are equal, and we limit ourselves to step changes. That is, \(\Delta g_k = 0 \) and \(\Delta g_k = \hat{g} \) for \(k \geq K \) for some \(K \), where \(\hat{g} \) is the step change.

III. Distributed Gradient Projection (DGP) Algorithm

To describe the algorithm, we define the consumption-generation mismatch at iteration \(k \):

\[
u_k \triangleq \Delta g_k - \sum_{i=1}^n x^i_k = \Delta g_k - 1^T x_k, \quad (2)\]

where \(x_k \equiv [x_1^k, \ldots, x_n^k]^T \) and \(1 \in \mathbb{R}^n \) is a vector of all ones. Neither \(\sum_{i=1}^n x^i_k \) nor \(\Delta g_k \) is known to any of the loads. However, load \(i \) can obtain a noisy measurement of the frequency deviation \(\hat{\Delta} w^i_k \equiv \omega_k - \omega_s \), which is denoted by \(\hat{\Delta} w^i_k \). It uses this measurement to estimate the mismatch, which is denoted by \(\hat{u}^i_k \).

The update law of the DGP algorithm comprises of 3 main operations: (i) a generation-matching step, (ii) a gradient descent step, and (iii) a projection step. The first step uses the estimated mismatch, \(\hat{u}^i_k \), to compute a consumption change that will reduce the mismatch. Pure gradient descent, though possible due to the separable cost function, will violate the equality constraint (consumption-generation matching). Therefore the gradient descent step is designed to be orthogonal to the generation-matching step, i.e., it does not change the total consumption. The updates computed by the first two steps are added and projected onto \(\Omega^i \) to respect the upper and lower bounds on consumption change.

The update law of the DGP algorithm at load \(i \) at time \(k \) is summarized below:

DGP Algorithm:

1. Obtain \(\hat{u}^i_k \) from the measurement \(\hat{\Delta} w^i_k \) using a state estimator, which is described in Section III-A. The *generation-matching step* is then \(b \gamma_k \hat{u}^i_k \), where \(\gamma_k \) is a step size and \(b \) is a positive constant.
2. Compute gradient \(\frac{d}{dx} f_i(x^i_k) \), transmit gradient value to neighbors, and receive neighbors’ gradient values. Compute the *gradient descent step* \(\Delta x^i_k \) as the \(i \)-th entry of \(\Delta x_k \), where

\[
\Delta x^i_k \triangleq -L \nabla f_i(x^i_k)^T, \quad \text{where} \quad L \text{ is the Laplacian matrix of the communication graph } \mathcal{G} \text{ [20].}
\]
3. Compute \(x^i_{k+1} = P_{1T}[x^i_k + a \alpha_k \Delta x^i_k + b \gamma_k \hat{u}^i_k] \), where \(P_{1T}[\cdot] \) denotes the standard projection operator, \(\alpha_k \) is a step size, and \(a \) is a positive constant.

The choice of \(L \) as the graph Laplacian matrix enforces communication constraints.
A. Estimation of consumption-generation mismatch using frequency measurements

We borrow the estimation method proposed in [11] for use in this paper, though it is possible to use any estimator in the DGP algorithm. The power grid is modeled as a discrete-time LTI system with consumption-generation mismatch, u_k, as the input and frequency deviation from nominal, $\Delta \omega_k$, as the output. At each time k, load i obtains the noisy measurement $\Delta \omega_i^k$ to estimate the state of the plant by using the estimator in [21], which was developed for estimating the state of a system with an unknown input. We omit the details here; the interested reader is referred to [11].

We denote the estimation error at time k by $\epsilon_k := \hat{u}_k - u_k$, where \hat{u}_k is the column vector of \hat{u}_i^k’s. Define the σ-algebra $\mathcal{F}_{K-1} := \sigma(\epsilon_{k-1} | \mathcal{V}, 1 \leq k \leq K)$. It was shown in [21] that

$$E[\epsilon_k^T \mathcal{F}_{K-1}] = 0. \quad (3)$$

In [11], it was shown that the estimation error converges in m.s. for the power system model considered. This, combined with (3), implies that the estimation error sequence ϵ_k is a martingale-difference sequence.

IV. CONVERGENCE ANALYSIS

A. Main Results

We make the following assumptions for our analysis.

Assumption 1. (Technical assumptions).
1) $\alpha_k = c \gamma_k$ for some positive constant c.
2) The function $\gamma_k \rightarrow 0$ satisfies $\sum_{k=0}^{\infty} \gamma_k = \infty$ and $\sum_{k=0}^{\infty} \gamma_k^2 < \infty$.
3) The estimation error sequence, ϵ_k, is a martingale-difference sequence.

Assumption 2. (Assumptions on disutility).
1) $f^i(x^i)$ is convex for each i with a (not necessarily unique) minimum at $x^i = 0$.
2) $f^i(x^i)$ is coercive for each i; i.e., $\{x^i | f^i(x^i) \leq F\}$ is compact for every $F \geq 0$ for each i.
3) $f^i(x^i)$ is continuously differentiable for each i.
4) $\nabla f^i(x^i)$ is Lipschitz for each i.

Assumption 3. (Assumptions on loads and generators).
1) $\Omega^i = \mathbb{R}$ for each i.
2) G is connected.
3) $\Delta g_k \equiv \bar{g}$ for all $k \geq 0$.

Assumption 4 (Additional assumption on estimation error).

$$\sup\{\epsilon_k | \epsilon_k < \bar{\epsilon} < \infty. \quad (4)$$

Assumptions 1(1) and 1(2) are satisfied by choice of α_k, and γ_k, and Assumptions 1(2) and 1(3) are standard technical assumptions in the field of stochastic approximation. For the estimator used in this work, Assumption 1(3) is satisfied as discussed in Section III-A. Assumption 2 is readily met because $f(x)$ is a modeling choice. Assumption 3(1) is the main limiting one: it states that there are no upper and lower limits on possible changes in consumption. Assumption 3(3) means that we only consider a step-change in generation.

The main convergence result is the following.

Theorem 1. If Assumptions 1, 2, and 3 hold, x_k converges to a solution of Problem (1) in the mean. If in addition, Assumption 4 holds, x_k converges to a solution to Problem (1) almost surely.

The technique used to prove this result is known as the o.d.e. method of stochastic approximation, which establishes a rigorous connection between noisy discrete iterations and a continuous-time o.d.e. [22].

Proposition 1 (Theorem 2 (Chapter 2) in [22]). Consider the sequence $\{y_k\}$ generated by the iteration

$$y_{k+1} = y_k + \gamma_k [h(y_k) + \epsilon_k], \quad (1)$$

where $h(y) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is Lipschitz and $\{\epsilon_k\}$ is a martingale-difference sequence. If γ_k satisfies Assumption 1(2) and $\sup\|y_k\| < \infty$ almost surely (a.s.), then y_k converges a.s. to a (possibly sample-path dependent) compact, connected, internally chain-transitive invariant set of the o.d.e.

$$y(t) = h(y(t)). \quad (2)$$

In many applications of the o.d.e. method, the main hurdle in analyzing convergence is to establish boundedness of the iterates x_k, as is the case here. Presence of the projection step guarantees boundedness trivially, but the corresponding o.d.e. can create spurious, undesired equilibria. In this preliminary work, we have therefore limited ourselves to the case where there is no projection, i.e., no bounds on the changes in consumption, but boundedness is no longer guaranteed. We make Assumption 4 to prove boundedness of x_k.

However, if the disutilities are quadratic, boundedness of the iterates is achieved via a technique in [22]. In that case we can remove the Assumption 4:

Theorem 2. Let Assumptions 1, 2, and 3 hold, and let $f^i(x^i) = q^i(x^i)^2/2$, where $q^i > 0$. Then $x_k \rightarrow x_\ast$ a.s., where x_\ast is the unique optimal solution to the optimization Problem 1.

Due to lack of space, we omit the proof of this result, which is provided in [23].

B. Proof of Theorem 1

We must now introduce some notation. For a given ℓ, define the $(n-1)$-dimensional hyperplane $H(\ell) = \{x | 1^T x = \ell\}$ and $X(\ell) = \{x \in H(\ell) | f(x) \leq f(y), y \in H(\ell)\}$. It follows that $H(\bar{y})$ is the set of all feasible solutions, and $X(\bar{y}) \subseteq H(\bar{y})$ is the set of all solutions to Problem (1). Since f is convex and the equality constraint is linear, necessary conditions for x_\ast to be optimal are also sufficient; they are

$$\nabla f(x_\ast) + \lambda_x 1 = 0, \quad \bar{g} - I^T x_\ast = 0, \quad (4)$$

for some scalar λ_x [24]. The interpretation of (4) is that $\nabla f(x_\ast) \parallel 1$ and $u = 0$.

The following lemma states that the iterates x_k are asymptotically feasible a.s. Note that Assumption 4 (boundedness of estimation error) is not required for this result.
Lemma 1. Let Assumptions 1, 2, and 3 hold, then \(x_k \rightarrow H(\bar{g}) \) a.s. Furthermore, all trajectories of the o.d.e.
\[
\dot{x}(t) = -L \nabla f(x(t))^T + (-1^T x(t) + \bar{g})1
\]
(5)
converge to \(H(\bar{g}) \). Consequently, \(u(t) \rightarrow 0 \), where
\[
u(t) \triangleq \bar{g} - 1^T x(t).
\]
(6)

The following two lemma states conditions for the DGP step direction to be a descent direction.

Lemma 2. Let Assumptions 1, 2, 3, and 4 hold. If \(\|x_k\| \) and \(k \) are sufficiently large, then \(d(x_k) \triangleq -L \nabla f(x_k) + u_k1 \) is almost surely a descent direction; that is, \(d(x_k)^T \nabla f(x_k)^T < 0 \) a.s.

Lemma 3 below is a consequence of Lemma 2.

Lemma 3. Let Assumptions 1, 2, 3, and 4 hold. If \(\|x_k\| \) and \(k \) are sufficiently large, then \(f(x_{k+1}) \leq f(x_k) \) a.s.

An immediate consequence of Lemma 3 is the following corollary which establishes boundedness of the iterates—a condition needed for applying Proposition 1.

Corollary 1. Let Assumptions 1, 2, 3, and 4 hold. Then \(\sup_k \|x_k\| < \infty \) a.s.

The proofs of these results are provided in [23]. We are now ready to sketch the proof of Theorem 1, and the full proof is available in [23].

Sketch of proof of Theorem 1. Proving convergence in the mean is very similar to the proof of a.s. convergence but simpler, so we only provide the proof of a.s. convergence.

By Corollary 1, \(\sup_k \|x_k\| < \infty \) a.s. Therefore, by Proposition 1, the iterates of the DGP algorithm converge almost surely to a compact, connected, internally chain-transitive invariant set of the o.d.e. (5). We call this set \(I \).

Our proof consists of two main parts: (i) we show \(I \subseteq E \), where \(E \) is the set of equilibrium points of (5); (ii) we show \(E = X(\bar{g}) \); that is, the set of equilibrium points of (5) is precisely the set of solutions to Problem (1).

If \(E \) is globally attractive (i.e., if all trajectories \(x(t) \rightarrow E \) for any \(x(t_0) \) for some \(t_0 \)), then all internally chain-transitive invariant sets of (5) must be contained within \(E \). Therefore, it suffices to show \(x(t) \rightarrow E \). Because \(x(t) \rightarrow H(\bar{g}) \) by Lemma 1, it can be shown by continuity that \(f(x(t)) \rightarrow \mathbb{R}_{\leq 0} \). A contradiction argument may then be used to show that \(f(x(t)) \rightarrow 0 \). By orthogonality of the terms on the RHS of (5), it follows that \(x(t) \rightarrow E \), and therefore \(I \subseteq E \).

\(E \) is the set of points where the RHS of (5) is zero. Because \(-L \nabla f(x)^T \perp 1 \), the RHS of (5) is zero if and only if \(-L \nabla f(x) = 0 \) and \(u = 0 \). Because \(G \) is connected, \(-L \nabla f(x) = 0 \) if and only if \(\nabla f(x) \parallel 1 \), and \(u = 0 \) if and only if \(x \in H(\bar{g}) \). These are precisely the necessary and sufficient conditions (4). Therefore, \(E = X(\bar{g}) \). Combining this result with the previous result, we have \(x_k \rightarrow I \subseteq E = X(\bar{g}) \) by Proposition 1, which proves the theorem.

V. SIMULATION RESULTS

A. Simulation Setup

Figure 2 shows the system architecture used for design and simulation. The process disturbance, \(\xi \), and measurement noise, \(\zeta \), at each load are modeled as wide-sense stationary white noise. For ease of comparison between the proposed DGP algorithm and DA, we use the same generator dynamics, noise statistics, and communication graph as in [11], which contains further detailed information regarding the simulation environment.

![Fig. 2. System architecture for simulations. Inter-load communication is not shown.](image_url)

For each load \(i \), we consider both constrained and unconstrained changes in consumption. For the constrained case, \(\Omega^i = [-\bar{x}^i, \bar{x}^i] \), where \(\bar{x}^i \) is chosen as in [11].

We test the performance of the DGP algorithm with two distinct disutility functions. The first is a convex but not strictly convex function:

\[
f^1(x^i) = \begin{cases} 0, & |x^i| \leq a^i \\ q^i(x^i - a^i)^2, & |x^i| \geq a^i, \end{cases}
\]
(7)
where \(a^i = 0.1\bar{x}^i \); for the unconstrained case, we use \(a^i \) from the constrained case. The consumer does not experience any disutility as long as the load variation is within \(\pm a^i \). The second disutility function is strictly convex:

\[
f^2(x^i) = \frac{q^i}{2} (x^i)^2.
\]
(8)

For both disutility functions, we pick \(q^i \) to be an arbitrary positive number such that \(1/q^i \) is chosen from a uniform distribution on the interval \([0.1, 0.3]\). This is chosen for comparison with [11], which makes a similar choice for disutility functions.

The initial conditions are \(g_0 = 200 \text{ MW} \) and \(u_0 = 0 \). Two generation contingencies are modeled as step changes:

\[
g_k = \begin{cases} 200 \text{ MW}, & 0 \leq kT < 20 \text{ s} \\ 190 \text{ MW}, & 20 \leq kT < 50 \text{ s} \\ 170 \text{ MW}, & 50 \leq kT, \end{cases}
\]

where \(T = 0.1 \text{ seconds} \) is the discretization interval.
Simulations are conducted with the communication network in [11], where load i communicates with loads from $\max\{1, i - n_0\}$ to $\min\{n, i + n_0\}$, where $n_0 \leq n$. We use $n = 1000$ and $n_0 = 1$.

Additionally, we use $a = 5$, $b = 1.5$, $c = 1$, and $\gamma_k = \gamma_0/(k^{0.8})$ for $k > 0$, with $\gamma_0 = 4q/n$, where $q \triangleq \min_i q^i$.

B. Results with non-strictly convex disutility function

Here we report simulation results with the consumer disutility function (7). DA is not applicable because the inverse of $\nabla f(x)$ must exist in Ω to implement DA, which is not the case when $|x^i| \leq a^i$.

Figure 3 shows results for both the projected and non-projected case (i.e., without and with Assumption 3(1), respectively); the system frequency without smart loads (i.e., with generator-only control) is shown in red as well.

System frequency is similar both with and without projection. There is a lower disutility for the scenario with projection; this may be caused by the algorithm reaching a “wall” and then having slower convergence thereafter compared to the scenario without projection. However, using DGP, the loads are able to assist the generator in avoiding large frequency deviations from the nominal when each contingency occurs—even with projection.

C. Comparison with dual algorithm

Figure 4 shows results of DGP and DA with quadratic disutilities (8) with projection. DGP results in a significantly smaller frequency drop compared to both generator-only control and DA.

However, the consumer disutility is significantly lower for DA than for DGP. This is because DA is responding more slowly than DGP, so the equality constraint is not being satisfied—resulting in a lower cost. The slower response of DA is due to the inversion of the derivative of each load’s disutility function, which is rather steep—leading to small changes in consumption. Conversely, DGP aggressively meets the equality constraint because of the generation-matching step. This results in a lower frequency deviation but more disutility.

DA has a significantly lower steady-state disutility because the generator control restores much of the frequency. The loads interpret the restored frequency as a smaller consumption-generation mismatch, which results in less change in consumption and therefore lower disutility.

Although not reported here, simulations with varying number of loads ($n = 10, 100$) and varying amount of communication ($n_0 = 10, 100, 1000$) showed similar trends as in the $n = 1000, n_0 = 1$ case. It was observed in [11] that DA showed similar behavior.

VI. CONCLUSION

The proposed DGP algorithm solves a constrained optimization problem in a distributed manner to aid a power
grid in maintaining system frequency near its nominal value while minimizing consumers’ disutility. The DGP algorithm solves the primal problem, whereas prior work solved the dual problem [11]. The advantage of the proposed method is that it is not restricted to strongly convex disutility functions; rather it is applicable to generally convex disutility functions that capture a consumer behavior that may be quite common. Simulations show that the algorithm is effective in reducing frequency excursions after contingency events while keeping the consumer disutility low. Simulations also show that the DGP algorithm performed either better than or similar to the dual algorithm from [11] in maintaining frequency.

In this preliminary work, we proved that the DGP algorithm converges to the optimal solution under two idealized assumptions. The first one is that there is no upper or lower bound on possible consumption change; the projection step of the algorithm that enforces bounds leads to potentially spurious equilibria, making the analysis more challenging. Future work will focus on removing this assumption. Simulations result with and without such projections are promising: there is hardly any difference in the behavior of the algorithm between the two cases. The second is the assumption that the estimation errors are bounded. This is due to difficulty in proving the iterates are bounded without projection, so removing the first assumption automatically removes this assumption. In this paper, we have been able to remove this assumption for a specific disutility function even in the projection-free case (Theorem 2).

Other interesting paths for future work include extension of the DGP algorithm to time-varying communication networks and time-varying changes in generation.

ACKNOWLEDGMENT

The authors thank C. Zhao and S. Low for their assistance in implementing the power system model used in this work and in reproducing the results of [11].

REFERENCES
